Superconvergence of the Iterated Galerkin Methods for Hammerstein Equations

نویسندگان

  • Hideaki Kaneko
  • Yuesheng Xu
چکیده

In this paper, the well known iterated Galerkin method and iterated Galerkin-Kantorovich regularization method for approximating the solution of Fredholm integral equations of the second kind are generalized to Hammerstein equations with smooth and weakly singular kernels. The order of convergence of the Galerkin method and those of superconvergence of the iterated methods are analyzed. Numerical examples are presented to illustrate the superconvergence of the iterated Galerkin approximation for Hammerstein equations with weakly singular kernels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence of the Iterated Collocation Methods for Hammerstein Equations

In this paper, we analyse the iterated collocation method for Hammerstein equations with smooth and weakly singular kernels. The paper expands the study which began in [14] concerning the superconvergence of the iterated Galerkin method for Hammerstein equations. We obtain in this paper a similar superconvergence result for the iterated collocation method for Hammerstein equations. We also disc...

متن کامل

Superconvergence Results for the Iterated Discrete Legendre Galerkin Method for Hammerstein Integral Equations

In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equation with a smooth kernel. Using a sufficiently accurate numerical quadrature rule, we obtain super-convergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and L-norm. Numerical examples are given to illustrate the theoretical results.

متن کامل

Superconvergence of Galerkin Solutions for Hammerstein Equations

In the present paper, we discuss the superconvergence of the interpolated Galerkin solutions for Hammerstein equations. With the interpolation post-processing for the Galerkin approximation xh, we get a higher order approximation I 2r−1 2h xh, whose convergence order is the same as that of the iterated Galerkin solution. Such an interpolation post-processing method is much simpler than the iter...

متن کامل

A Note on the Use of Residual as an Error Estimator for Hammerstein Equations

In this paper, we show that the residual can be used to estimate the error of a numerical solution for a class of nonlinear Hammerstein equations. It is also shown that the superconvergence of the iterated numerical solution provides a sufficient condition for the residual to be used as an error estimator. Hammerstein equations with smooth as well as wekly singular kernels will be treated.

متن کامل

The Discrete Galerkin Method for Integral Equations

A general theory is given for discretized versions of the Galerkin method for solving Fredholm integral equations of the second kind. The discretized Galerkin method is obtained from using numerical integration to evaluate the integrals occurring in the Galerkin method. The theoretical framework that is given parallels that of the regular Galerkin method, including the error analysis of the sup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001